

THIRD EDITION

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

Third Edition

James F. Epperson Mathematical Reviews

shiel interface bracks of Manhooding and all the second

CONTENTS

Pref	face		xiii
Foreword			xV
1	Intro	oductory Concepts and Calculus Review	1
	1.1	Basic Tools of Calculus	2
		1.1.1 Taylor's Theorem	2
		1.1.2 Mean Value and Extreme Value Theorems	9
	1.2	Error, Approximate Equality, and Asymptotic Order Notation	14
		1.2.1 Error	14
		1.2.2 Notation: Approximate Equality	15
		1.2.3 Notation: Asymptotic Order	16
	1.3	A Primer on Computer Arithmetic	20
	1.4	A Word on Computer Languages and Software	29
	1.5	A Brief History of Scientific Computing	32
	1.6	Literature Review	36
		References	36
2	A Survey of Simple Methods and Tools		39
	2.1	Horner's Rule and Nested Multiplication	39
	2.2	Difference Approximations to the Derivative	44
	2.3	Application: Euler's Method for Initial Value Problems	52
	2.4	Linear Interpolation	58
			vii

	2.5	Application—The Trapezoid Rule	64
	2.6	Solution of Tridiagonal Linear Systems	75
	2.7	Application: Simple Two-Point Boundary Value Problems	81
3	Root	t-Finding	87
	3.1	The Bisection Method	88
	3.2	Newton's Method: Derivation and Examples	95
	3.3	How to Stop Newton's Method	101
	3.4	Application: Division Using Newton's Method	104
	3.5	The Newton Error Formula	108
	3.6	Newton's Method: Theory and Convergence	113
	3.7	Application: Computation of the Square Root	117
	3.8	The Secant Method: Derivation and Examples	120
	3.9	Fixed-Point Iteration	124
	3.10	Roots of Polynomials, Part 1	133
	3.11	Special Topics in Root-finding Methods	141
		3.11.1 Extrapolation and Acceleration	141
		3.11.2 Variants of Newton's Method	145
		3.11.3 The Secant Method: Theory and Convergence	149
		3.11.4 Multiple Roots	153
		3.11.5 In Search of Fast Global Convergence: Hybrid Algorithms	157
	3.12	Very High-order Methods and the Efficiency Index	162
	3.13	Literature and Software Discussion	166
		References	166
1	Inter	polation and Approximation	169
	4.1	Lagrange Interpolation	169
	4.2	Newton Interpolation and Divided Differences	175
	4.3	Interpolation Error	185
	4.4	Application: Muller's Method and Inverse Quadratic Interpolation	190
	4.5	Application: More Approximations to the Derivative	194
	4.6	Hermite Interpolation	196
	4.7	Piecewise Polynomial Interpolation	200
	4.8	An Introduction to Splines	207
		4.8.1 Definition of the Problem	207
		4.8.2 Cubic B-Splines	208
	4.9	Tension Splines	223
	4.10	Least Squares Concepts in Approximation	229
		4.10.1 An Introduction to Data Fitting	229
		4.10.2 Least Squares Approximation and Orthogonal Polynomials	233
	4.11	Advanced Topics in Interpolation and Approximation	246

			CONTENTS IX
		4.11.1 Stability of Polynomial Interpolation	247
		4.11.2 The Runge Example	249
		4.11.3 The Chebyshev Nodes	253
		4.11.4 Spectral Interpolation	257
	4.12	Literature and Software Discussion	265
		References	266
5	Num	erical Integration	269
	5.1	A Review of the Definite Integral	270
	5.2	Improving the Trapezoid Rule	272
	5.3	Simpson's Rule and Degree of Precision	277
	5.4	The Midpoint Rule	288
	5.5	Application: Stirling's Formula	292
	5.6	Gaussian Quadrature	294
	5.7	Extrapolation Methods	306
	5.8	Special Topics in Numerical Integration	313
		5.8.1 Romberg Integration	313
		5.8.2 Quadrature with Non-smooth Integrands	318
		5.8.3 Adaptive Integration	323
		5.8.4 Peano Estimates for the Trapezoid Rule	329
	5.9	Literature and Software Discussion	335
		References	335
6	Num	erical Methods for Ordinary Differential Equation	is 337
	6.1	The Initial Value Problem: Background	338
	6.2	Euler's Method	343
	6.3	Analysis of Euler's Method	346
	6.4	Variants of Euler's Method	350
		6.4.1 The Residual and Truncation Error	352
		6.4.2 Implicit Methods and Predictor–Corrector Sch	emes 355
		6.4.3 Starting Values and Multistep Methods	360
		6.4.4 The Midpoint Method and Weak Stability	362
	6.5	Single-Step Methods: Runge-Kutta	367
	6.6	Multistep Methods	374
		6.6.1 The Adams Families	374
		6.6.2 The BDF Family	378
	6.7	Stability Issues	380
		6.7.1 Stability Theory for Multistep Methods	380
		6.7.2 Stability Regions	384
	6.8	Application to Systems of Equations	385
		6.8.1 Implementation Issues and Examples	385

		6.8.2 Stiff Equations		
		6.8.3 A-Stability		
	6.9	Adaptive Solvers		
	6.10	Boundary Value Problems		
		6.10.1 Simple Difference Methods		
		6.10.2 Shooting Methods		
		6.10.3 Higher Order Difference Methods for BVPs		
		6.10.4 Finite Element Methods for BVPs		
	6.11	Literature and Software Discussion		
		References		
7	Numerical Methods for the Solution of Systems of Equations			
	7.1	Linear Algebra Review		
	7.2	Linear Systems and Gaussian Elimination		
	7.3	Operation Counts		
	7.4	The LU Factorization		
	7.5	Perturbation, Conditioning, and Stability		
		7.5.1 Vector and Matrix Norms		
		7.5.2 The Condition Number and Perturbations		
		7.5.3 Estimating the Condition Number		
		7.5.4 Iterative Refinement		
	7.6	SPD Matrices and the Cholesky Decomposition		
	7.7	Application: Numerical Solution of Linear Least Squares Problems		
	7.8	Sparse and Structured Matrices		
	7.9	Iterative Methods for Linear Systems: A Brief Survey		
	7.10	Nonlinear Systems: Newton's Method and Related Ideas		
		7.10.1 Newton's Method		
		7.10.2 Fixed-Point Methods		
	7.11	Application: Numerical Solution of Nonlinear Boundary Value		
	7 10	Literature and Software Discussion		
	1.12	Deferences		
		Acticities		
8	Approximate Solution of the Algebraic Eigenvalue Problem			
	8.1	Eigenvalue Review		
	8.2	Reduction to Hessenberg Form		
	8.3	Power Methods		
	8.4	Bisection and Inertia to Compute Eigenvalues of Symmetric Matrices		
	8.5	An Overview of the QR Iteration		
	8.6	Application: Roots of Polynomials, Part II		
	8.7	Application: Computation of Gaussian Quadrature Rules		

		CONT	TENTS	xi
	8.8	Literature and Software Discussion		557
		References		557
9	A Survey of Numerical Methods for Partial Differential Equations			559
	9.1	Difference Methods for the Diffusion Equation		559
		9.1.1 The Basic Problem		559
		9.1.2 The Explicit Method and Stability		560
		9.1.3 Implicit Methods and the Crank–Nicolson Method		565
	9.2	Finite Element Methods for the Diffusion Equation		574
	9.3	Difference Methods for Poisson Equations		578
		9.3.1 Discretization and Examples		578
		9.3.2 Higher Order Methods		588
		9.3.3 Iteration and the Method of Conjugate Gradients		593
	9.4	Literature and Software Discussion		605
		References		605
10	More on Spectral Methods			607
	10.1	Spectral Methods for Two-Point Boundary Value Problems		608
	10.2	Spectral Methods in Two Dimensions	-	621
	10.3	Spectral Methods for Time-Dependent Problems		631
	10.4	Clenshaw-Curtis Quadrature		635
	10.5	Literature and Software Discussion		637
		References		637
Арр	pendix	A: Proofs of Selected Theorems,		
	and	Additional Material	6	639
	A.1	Proofs of the Interpolation Error Theorems		639
	A.2	Proof of the Stability Result for ODEs		641
	A.3	Stiff Systems of Differential Equations and Eigenvalues		642
	A.4	The Matrix Perturbation Theorem		644
Inde	x			646

PREFACE

I began working on this project in the late 1990s, and am very pleased that it has been successful enough to go through four editions¹ in slightly more than 20 years. My goal was ambitious: To write a text that was complete, yet could be used for an introductory course. Over the life of the text, the author has had to deal with changes in the computing environment available to students, as well as changes in the publishing/textbook industry. Because I have always seen this as an entry-level text, a lot of the new material, which might be considered non-elementary, is discussed largely through examples.

In this Third Edition, I have expanded the material on spectral methods, completely revamped the material on Poisson equations, included an additional method for the symmetric eigenvalue problem, added material on high-order difference methods for boundary value problems, and of course fixed (or tried to) several typo issues found and submitted to me by numerous colleagues. The dependence on MATLAB (or similar platforms) has increased a bit.

As with the Second Edition, there will be a website devoted to the text, maintained by the author. The URL should be something like:

www.jfepperson.org/3edition-web

If the "slings and arrows of outrageous fortune" should render that invalid, a link will certainly be posted on the Second edition website, which is here:

www.jfepperson.org/2edition-web.

The list of people to be thanked is lengthy, ranging from my original editor at Wiley, Barbara Holland, my current editor, Sandra Grayson (and her staff—most especially Kimberly Monroe-Hill, who put up with endless emails from me, and Becky Cowan, who led

¹The First Edition was published in 2001, the Revised Edition in 2007, the Second Edition in 2013, and this Third Edition in 2021.

XIV PREFACE

the effort that resulted in the outstanding cover for this edition), to my family—wife Georgia, children Elinor and Jay—as well as the staff and leadership at Mathematical Reviews (Executive Editor Edward Dunne) and the American Mathematical Society (Executive Director Catherine Roberts), who made possible the Study Leave (sabbatical) during which I wrote most of this new edition. A special shout-out is due to my MR Editorial colleague James Tian, who helped with a number of LaTeX issues (as did Amanda Francis and Mike Jones).

JFE

James F. Epperson

Ann Arbor

bie with the Beneral Edition. Only with by a reduitable and he fait was measured by the author. The URL should be concelling that

Swap to I think to a solution of the

(i) the "shares and arrows of static process branch" shares "static" in terms of the branch is reference of the protect of

the flac parque to be financed in levering without reasoning segment action at 8 million to the second s Second seco

To Please to have not put to have to 200% year factors of theme with a first process in the second to Please Please manual in 1999.